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FIG. 1. Melting ofcopper at T,, = 0” and T,, = 400 t 2000 t. 

rather easily by the simpler constant thermal physical 
property condition l’or materials having linear thermal 
conductivity and volumetric specific heat functional re- 
lationships with temperature. 
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NOMENCLATURE 

specific heat ; 
duct diameter [m] ; 
sphere diameter [m] ; 
function defined by equation (4) [W/m’ K] : 
Grashof number ; 
beat transfer coefficient for convection [W/m’ K] ; 
effective heat transfer coefftcient [W/m’ K] ; 
heat transfer coeflicient for radiation [W/m2 K]: 
thermal conductivity [W/m K] ; 
Nusselt number, &D/k; 
Prandtl number: 
rate of heat transfer by convection [W] ; 
rate of heat transferay conduction [W] : 

Q 
l7.R 
Re, 
R &, 
‘RSii, 
t ‘l, 
t I”. 
t 
;;’ 

rate of heat transfer by radiation [W] : 
radius of the sphere [m] : 
Reynolds number. (UpD/p); 
rotational Reynolds number, VD/v; 
radius of support shaft [m]: 
air temperature rC] ; 
sphere mean temperature PC] ; 
sphere surface temperature [“C] ; 
absolute temperature of the air in the boundary 
layer [K] ; 

L absolute air temperature [K] ; 
T ItC, sphere mean absoiute temperature [K] : 
r, sphere surface absolute temperature [K]. 
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Greek letters 

s, emissivity ; 
P? density [kg/m’] ; 
u, Stefan-Boltzmann constant [W/m’ KJ] , 
w angular velocity of sphere axis [rad/s]: 

5, time [s]. 

INTRODUCTION 

THE PROBLEM of heat transfer from a spherical particle to 

a fluid is of importance in several different applications from 

combustion of fuel droplets to the formation of hailstones. 

Many investigators have published papers on the heat 

transfer from a stationary sphere to a fluid stream. The 

present note adds some experimental results for the case 

when a sphere is spinning in a plane at right angles to the 

flowing fluid, in this case air. Results are also given for a 

sphere spinning in stationary air. 

APPARATUS AND EXPERIMENTAL METHOD 

The experimental results of the present investigation were 

obtained from a solid phosphor-bronze sphere of 50.8 mm 

diameter attached to a vertical steel shaft of 7.75 mm 

diameter and mounted in a vertical duct of 610 x 610 mm 

cross-section, through which air was drawn upwards by a 

centrifugal fan. A series of meshes and flow straighteners 

produced a uniform air stream with a free stream turbulence 

intensity of 0008. 
The experimental technique used to obtain the mean heat 

transfer coefficient and complete details of the design of the 

apparatus, are given in [l]. A transient method was used, 

the temperature of the centre of the sphere being measured 

as the sphere cooled in an air stream. A carefully devised 

correction was made for the conduction loss through the 

steel shaft, based on readings from a series of thermocouples 

on the shaft. Tests were carried out with the sphere cooling 

in natural convection and these tests were then repeated 

with the sphere suspended by a nylon line. Very good 

agreement was obtained between the corrected results, those 

from the sphere on the nylon line, and results obtained by 

other investigators [2 41. As a further check on the method 

of correcting for the conduction loss, readings were taken for 

the sphere stationary in an air stream and compared with 

correlations of Raithby and Eckert [S], and of Yuge [2]. 

By analysing the conduction of heat within the sphere and 

by using the Heisler chart for a sphere [6], it was estimated 

that the temperature at the sphere centre was within lf per 

cent of the temperature at the sphere surface for sphere 

centre temperatures up to 80°C. To check this a series of 

tests was performed with a separate sphere of the same 

design, with a number of thermocouples mounted on the 
surface at various stations. From the direct cooling curves 

obtained, the temperature of the sphere surface was found 

to be at no point less than about 98$ per cent of the sphere 

centre temperature over the entire range of Reynolds 

numbers (see [lD. 

The method of calculating the heat transfer coefficient 

from the cooling curve for the sphere centre thermocouple 

was as follows: At any instant the sum of the heat losses 

must equal the rate of loss of energy of the sphere, i.e. 

Qc + QR + Qeonc, = - ~V,dTnldr (1) 

Also. 

Q, = h,(47rRZ - nR&,) (t, - tJ (2) 

Qi = h,(4nRZ - nR&) (t, - t,J (3) 

(4) 

In equation (4) the term F is a function of the thermal 

conductivity of the shaft material, the length of the shaft, 

the diameter of the shaft, the heat transfer coefficient from 

the shaft to the air, and the change of shaft temperature with 

time; the value of F was carefully calculated as mentioned 

above, and a detailed account of the method is given in [l]. 

Substituting equations (2)+4) in equation (1) and simplifying 

we have : 

FR& II CRP d (t,, - t3 
+zm =3 & (5) 

i.e. 

PCR d (4, - ~3 her&, - tJ = - 37’ 

If it is assumed that h,, remains constant over a finite time 

interval AT in which the sphere mean temperature fall\ from 

t,,, to t ,“*, then : 

(7) 

Also. by comparing equations (5) and (9 it can be seen that 

Hence, 

where 

h, = m(Tf t T:) (T, t TJ. 

From the sphere cooling curve, values of (t,, - rJ at various 
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times were measured and a mean effective heat transfer 

coefficient, he, calculated using equation (7). After having 

obtained the appropriate value of F from the conduction 

correction curves. and a calculated value of ha for the given 

surface temperature and air tem~rature~ equation (9) was 

used to calculate the heat transfer coefftcient for convection. 

h,. The surface of the sphere was given a thin bright nickel 

plating which gave a polished mirror finish at all tempera- 

tures, and hence a constant value of emissivity was assumed. 

The radiation correction, h, was of the order of 1 per cent 

of h,, and the conduction correction F, was never greater 

than 10 per cent of h,. 
The sphere diameter was sufficiently small compared with 

the duct cross-section to ensure negligible distortion of the 

streamlines of the free stream outside the sphere boundary 

layer. Vliet and Leppert [7] used a corrected free stream 

velocity by dividing the approach free stream velocity by 

the factor 12/3 (O/@, where II and d represent the sphere 

and duct diameters respectively. For the present investi- 

gation the error in ignoring this correction is about 0.3 

per cent. 

Pei [8] has shown that for a rear-support shaft the effect 

of the shaft on the corrected heat transfer coefficient from 

the sphere, h,, is negligible when the flow Reynolds number 

is greater than about 5000. 

HEAT TRANSFER RESUtTS 

Rotating sphere in still air 

It has been shown mathematically by Howarth [9] and 

verified experimentally by Bowden and Lord [IO], that as a 

sphere rotates it draws fluid from each pole, a laminar 

boundary layer forming on the surface: near the equator 

the two streams impinge leaving the sphere as a flat radial 

Nu 
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jet. Dorfman and Mironova [ll] have analysed theoretically 

the case of heat transfer from a rotating sphere in a still fluid. 

When their results are integrated over the entire sphere 

surface, the following equation is obtained : 

Nu = 0252 Ret. (10) 

Experiments have been performed by Kreith et al. [12] and 

the following correlation suggested 

Nu = @43 ReiPr“' for 0.7 < Pr < 217 and 

Re < 5 x 104. (11) 

For air with Pr = 0.7 equation (11) becomes 

Nu = 0.373 Reft (12) 

In the present investigation a series of tests was undertaken 

for a sphere rotating in still air, for a Grashof number of 

65 x 10s. When the results are plotted as NW against Reft a 
straight line relationship is found for values of Re, > 5800; 

this relationship can be expressed as : 

Nu = 0.353 Reft (13) 

Below a certain value of Re, for the given Grashof number 

free convection effects increase the heat transfer from the 

sphere. Since only one Grashof number was used for all the 

tests the exact point at which free convection becomes 

important is not clearly defined from the present tests. 

For the present results, when Gr/Rei < @02 then natural 

convection effects are negligible. 
The present results, together with the mean result for 

natural convection at Gr = 6.5 x lOs, and the results of 

Kreith et al. [12], are shown in Fig. 1. Also shown on the 

figure is the correlation of Dorfman and Mironova [ll] 

given by equation (10). The discrepancy between the 

experiment and the theory may be due to the fact that the 

Correlolron of Kreith &of 1121 
NC/ = 0,373 Red” 

Theory of Dorfmon and Mlronova 
Nu =0,252 Rek/’ 

11 I I 

‘/ 2 I 6 

Re, x IO4 

FIG. 1. Heat transfer from a rotating sphere in still air. 

Ill : 
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theory ignores the effect of the radial jet of fluid leaving the 

equator, which will considerably increase the heat transfer 

from the sphere. 

Rotating sphere in an air stream 
For a given air flow, tests were made at various values of 

rotational speed and then repeated for a different air flow. 

It was found that for any given air flow there was a rotational 

speed below which the heat transfer appeared to be un- 

affected by the rotation. When the results were plotted as 

Nusselt number against the ratio of rotational Reynolds 

number Re,, to flow Reynolds number, Re, it was found that 

for all flows the point at which rotation begins to have an 

influence on the heat transfer, occurs at a fixed value of 

Re,lRe of between 0.5 and 0.6. 

At zero rotation, the results can be correlated by the 

equation, Nu = 0228 Re0’6, (l), hence dividing each value of 

the Nusselt number by the right hand side of this equation 

reduces the results to a simple correlation for all Reynolds 

numbers as shown by Fig. 2 in which Nu/0.228 Re0’6 is 

plotted against Re,/Re. From these results we have : 

Nu/0.228Re0‘6 = 1 + cl67 [z - @54] 

for Re,/Re > 0.54. (14) 
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FIG. 2. Heat transfer from a rotating sphere in an air stream. 

REFERENCES 

1. 

2. 

3. 

T. D. EASTOP, Heat transfer from a rotating sphere, 
Ph.D. thesis, C.N.A.A. (1971). 
T. YUGE, Experiments on heat transfer from spheres 
including combined natural and forced convection, 
J. Heat Transfer 82C, 214220 (1969). 
W. ELENBAAS, The dissipation of heat by free convection 
of spheres and horizontal cylinders, Physica IX (3). 
285-296 (1942). 

4. 

This equation correlates the results within +4 per cent. 

For values of Re,JRe < 0.54 rotation does not affect the 
heat transfer. 

5. 

6. 

7. 

8 

9 

10. 

11. 

12. 

R. NORDLIE and F. KREITH, Convection heat transfer 
from a rotating sphere. Int. Deu. Heat Transfer, Pt. II, 
pp. 461467 (1961). 
G. D. RAITHBY and E. R. G. ECKERT, The effect of 
turbulence parameters and support position on the heat 
transfer from spheres. Znt. J. Heat Mass Transfer 10, 
529-539 (1967). 
M. P. HEISLER. Temperature charts for induction and 
constant temperature heating, Trans. Am. Sot. Mech. 
Engrs 69, 227-236 (1947). 
G. C. VLIET and G. LEPPERT, Forced convection heat 
transfer from an isothermal sphere to water, J. Heat 
Transfer 83C, 163-175 (1961). 
D. C. T. PEI, Effect of tunnel blockage and support on 
the heat transfer from spheres, Znt. J. Heat Mass 
Transfer 12, 1707-1709 (1969). 
L. HOWARTH, Note on the boundary layer on a rotating 
sphere, Phil. Mag. 42, 1308-1315 (1951). 
F. P. BOWDEN and R. G. LORD, The aerodynamic 
resistance to a sphere rotating at high speed, Proc. R. 
Sot. 271A, 143-153 (1963). 
L. A. DORFMAN and V. A. MIRONOVA, Solutions of 
equations for the thermal boundary layer at a rotating 
axisymmetric surface, Int. J. Heat Mass Transfer 13, 
81-92 (1970). 
F. KREITH, L. G. ROBERTS, J. A. SULLIVAN and S. N. 
SINHA, Convection heat transfer and flow phenomena 
of rotating spheres, Int. J. Heat Mass Transfer 6, 
881-895 (1963). 


